Atomic and molecular spectroscopy of comets

Alan Fitzsimmons Astrophysics Research Centre Queen's University Belfast

Comet Structure - Nucleus and inner coma

Near nuclear surface sublimation and collisional chemistry

T~200-300K v~500-1000 m/s n~10⁸ cm⁻³

Collision Radius ~10¹-10³ km

Astron Astrophys 442, p1107

Queen's University Alan Fitzsimmons Astrophysics Research Centre

VAMDC Meeting QUB 17th April 2015

Comet Structure - Coma and Tails

Beyond ~10³ km, simple photodissociation and photoionisation dominates chemical/atomic structure of the coma.

 $H_{2}O + \gamma \rightarrow OH + H$ $(OH + \gamma \rightarrow O + H)$ $H_{2}O + \gamma \rightarrow O[^{1}D] + H_{2}$ $H_{2}O + \gamma \rightarrow H_{2}O^{+} + e^{-}$

Primary Excitation Processes

1. Collisional Excitation

Occurs due to H₂O and/or CO in inner coma.

2. Radiative Vibrational Excitation

Fundamental vibrational bands in *IR* excited by direct solar radiation.

3. Resonance Fluoresence

Established by solar pumping and spontaneous decay, seen in the *optical*.

4. Radiative Electronic Excitation

Excitation of electronic transitions in UV by solar radiation.

5. Charge Exchange

Observed in *X-rays* between solar wind ions and radicals in outer coma.

Optical Spectra

Dominated by electronic -vibrational transitions in photodissociation products

Almost all emission from resonance fluorescence with solar photons.

Matching to fluorescence excitation model gives column densities

Ro-vibrational structure at high resolution allows detailed comparison with excitation model, plus C,N isotope measurement.

Queen's University Alan Fitzsimmons Astrophysics Research Centre

Relative Intensity

IR Spectra

Astrophysics Research Centre

QUB 17th April 2015

IR Spectra

Sub-mm Spectra

M. de Val-Borro et al.: Submillimetric observations of comet C/2004 Q2 (Machholz)

Queen's University Belfast Alan Fitzsimmons Astrophysics Research Centre

Sub-mm Spectra

Alma now providing first high quality spatial maps of inner coma molecular distribution.

Cordiner et al. 2014 ApJ Lett. 792, L2

Queen's University Alan Fitzsimmons Astrophysics Research Centre

Comet Molecular Abundances

Astrophysics Research Centre

QUB 17th April 2015

Optical Spectra - unknown lines

~10%-20% of lines in high-resolution UV-optical spectra unidentified.

Most probably due to uncatalogued NH2 transitions? But...

28 lines of CS2 identified by comparison with laboratory studies (Jackson et al. 2004. ApJ 607, L139).

Summary

- Comet spectroscopy requirements very similar to ISM.
- Column densities and relative abundances require molecular data for UV–Radio transitions.
- Requirement for both theoretical and laboratory measurements for further identification/calculation of photon scattering coefficients.
- Next bright comet at negative declination will swamp field with ALMA and NIR detections and data.