Data Needs for Exoplanetary Characterization

Nikku Madhusudhan Institute of Astronomy, University of Cambridge

> April 17, 2015, Belfast VAMDC UK Meeting

Image Credits: ESA – C. Carreau

The Future of Exoplanet Science

The James Webb Space Telescope

The future from ground E-ELT, GMT, TMT

Spectroscopy of Transiting Exoplanets

Deming et al. 2013, Madhusudhan et al. 2014

Exoplanetary Atmosphere Models

1-D models of irradiated atmospheres with line-by-line radiative transfer

 $\frac{dP}{dr} = -\rho g$ $\frac{dI_{\lambda}}{d\tau_{\lambda}} = -(1 + \frac{\sigma_{\lambda}}{\kappa_{\lambda}})I_{\lambda} + \frac{j_{\lambda}}{\kappa_{\lambda}}$ $\left| \int_{0}^{\infty} \kappa_{\lambda} [J_{\lambda} - B_{\lambda}] d\lambda = 0 \right|$ $\frac{dT}{dr} = -\frac{\gamma - 1}{\gamma} \frac{\mu g}{k_{B}}$ $P = \frac{\rho k_{B} T}{\mu}$

• Day-night redistribution: P_n, P_1, P_2

- Extra absorber: $P_{abs}, (\lambda_0, \lambda_1), \kappa_e$
- Composition (f_z) + clouds, etc.

Boundary Conditions

- Stellar Irradiation (Kurucz Model)
- Intrinsic Energy source

Caveats

- Parameters
 Changing lange like intervention
- Chemical equilibrium and compositions
- Computation time
- Artificial sources and sinks

Seager & Sasselov 1998, Sudarsky et al. 2003 Fortney et al. 2006, Burrows et al. 2007

Exoplanetary Atmosphere Models

1-D models of irradiated atmospheres with line-by-line radiative transfer

Seager & Sasselov 1998, Sudarsky et al. 2003 Fortney et al. 2006, Burrows et al. 2007

Spectral Signatures of hot Jupiter Atmospheres

Chemistry in Hot Giant Exoplanets

Need for Accuracy and Completeness in Molecular Line lists

1. Exoplanetary Atmospheres – Early Days

Ground-based Photometry and Spectroscopy

Measurement of atmospheric C/O in a giant planet

[H₂0]/[H₂]

[H]/[O]

Key Molecular Constraints

- $H_2O/H_2 \le 6 \times 10^{-6}$
- $CH_4 / H_2 \ge 8 \times 10^{-6}$

C/O ≥ 1

10 10-4 10-2 [c0]/[H²] 10-6 10-8 10-4 10-10 10-5 10⁻⁵ 10⁻⁴ 10-3 10-5 10-3 10-6 10-2 10^{-2} 10-6 10-4 [CH4]/[H2] [CH4]/[H2] 10-2 10^{-3} [c]/[o] 10-4 10 -4 10⁻³ [С]/[Н] 10-4 10-5 10-3 10-5 10-2 10-4 10-2 [C]/[H]

Adapted from Madhusudhan et al. 2011, Nature, 469, 64

Data from Lopez-Morales et al. 2010; Croll et al. 2010; Campo et al. 2011 But cf Crossfield et al. 2012, Cowan et al. 2012, Swain et al. 2012, Stevenson et al. 2014

New Advances with HST WFC3

Swain et al. 2012, Madhusudhan 2012, Stevenson et al. 2014

New H₂O detections with HST Transit Spectroscopy

Deming et al. 2013; Madhusudhan et al. 2014a McCullough et al. 2014

High-precision H₂O Measurements

Madhusudhan et al. 2014a

H₂O in the atmosphere of WASP-43b

Kriedberg et al. 2014, ApJ

Precision Atmospheric Science for Exoplanets

Haynes et al. (2015)

The best current observations are already at the accuracy limit of molecular line lists!

2. Very High-resolution Spectroscopy

RV-Shifted Absorption from HD 209458b During Transit

CO absorption detected at 5.6σ

CO detection in hot Jupiters

- 1. Molecular abundances of most dominant molecules.
- 2. Transiting as well as RV planets.
- A wide range of planet types: super-Earths to Jupiters.
- 4. Measuring planetary rotation

Molecules in JWST/METIS Range

3. Brown Dwarf Atmospheres

Brown Dwarf Atmospheres

Apai et al. 2013

4. Super-Earth Interiors and Atmospheres

Need for high-T EOS

Valencia et al. 2006, Fortney et al. 2007, Seager et al. 2007, Sotin et al. 2007, Rogers & Seager 2009, 2010, Lopez et al. 2012, Madhusudhan et al. 2012

New Data require High-T Spectroscopic Line lists for

Molecules: H₂O, CO, CH₄, CO₂, NH₃, HCN, C₂H₂, TiO, VO, TiH, FeH

Requirements from Laboratory Astrophsyics

Primary Molecules: H₂O, CO, CH₄, CO₂, NH₃, HCN, C₂H₂, TiO, VO, TiH, FeH

Molecule	Ref	Method	Isotopologues	Tmax	c	Ν	Availa	ble^d
C_2	Kurucz (2011)	semi		5200	К	3459595	Kuruo	z
CH	Kurucz (2011)	semi		3000	Κ	71591	Kuruo	z
CN	Kurucz (2011)	semi		5000	Κ	1644597	Kuruo	z
CO	Rothman et al. (2010)	expt		4000	K	113631	HITE	MP
CaH	Weck et al. (2003d)	semi		3500	Κ	89970	UGAI	MOP
CrH	Burrows et al. (2002)	semi	⁵⁰ Cr, ⁵³ Cr, ⁵⁴ Cr	1300	Κ	13824	Berna	th
FeH	Bernath and co-workers ^a	semi	54 Fe, 57 Fe, 58 Fe	1600	к	116300	Berna	th
HD+	Coppola et al. (2011)	ai		all		10120	ExoM	ol
HeH^+	Engel et al. (2005)	ai	all ^e	all		8573	ExoM	ol
LiCl	Weck et al. (2004)	semi		40001	К	3357811	UGAI	MOP
LiH	Coppola et al. (2011)	ai		all		18981	ExoM	ol
LiH ⁺	Coppola et al. (2011)	ai		all		329	ExoM	ol
MgH	Weck and co-workers ^b	semi		1300	к	23315	UGAI	MOP
OH	Rothman et al. (2010)	expt		4000	Κ	41577	HITE	MP
NH	Kurucz (2011)	semi		3000	к	36163	Kuruo	z
NO	Rothman et al. (2010)	expt		4000	К	115610	HITE	MP
SiH	Kurucz (2011)	semi		3000	к	78286	Kuruo	z
SiO	Langhoff & Bauschlicher (1993)	semi						
SiO	Kurucz (2011)	semi		5300	К	1827047	Kuruo	z
TiH	Burrows et al. (2005)	semi		1800	к	199073	Berna	th
TiO	Schwenke (1998)	\mathbf{semi}		6200	К	37744499	Kuruo	z
Molecule	Ref	Isotopolog		$T^{max} = 10^{-6} N$		N Av	ailable	
H_2^+	Neale et al. (1996)	H_2D^+ (So	chi & Tennyson 20	10)	3000	K	12 Ex-	oMol
$H_2^{\circ}O$	Barber et al. (2006)	HDO (Vor	onin et al. 2010)	-	3000	K 5	03 Ex	oMol
HCN/HNC	Harris et al. (2006)	H ¹³ CN (Harris et al. 2008)			3000	K 2	40 Ex	oMol
C ₃	Jørgensen et al. (1989)				3100	K		
CO_2	Tashkun & Perevalov (2011)	all			5000	к е	26 CD	SD
NH ₃	Yurchenko et al. (2011a)				1500	K 10	14 Ex	oMol

Tennyson & Yurchenko, MNRAS, 2012

High T (3000 K) Line Lists of H₂O

Rothman et al. 2010

Temperature dependence of H₂O Spectra

 Reliable high-T Line lists have been available for H₂O, CO, and CO₂
 (Rothman et al. 2005, Barber et al. 2006, Freedman et al. 2008, Rothman et al. 2010)

Absorption spectra of CH₄: Temperature Effect

Line list Requirements

Relatively Complete line lists exist only for H₂O, CH₄, CO, CO₂, NH₃

Experimental high-temperature line lists for:

HCN, C₂H₂, TiO, VO, H₂S, SiO, SO₃, PH₃, Metal Hydrides (TiH, FeH, MgH, AlH, CrH), etc.

Theoretical ab initio line lists for: C₂H₂, VO, Metal Hydrides (TiH, FeH, MgH, CrH), etc.

Theoretical line lists in progress (requiring validation): H₂S, SiO, PH₃, AlH, SO₃, CrH, Al₂O₃

Both Experimental and Theoretical work on:

Higher-order hydrocarbons, self-broadened line lists for super-Earth atmospheres, aerosols, and atomic species (Na, K).

Summary

 New observations are leading to unprecedented constraints on molecular compositions and elemental abundance ratios (e.g. C/O) of exoplanetary atmospheres

• Major implications for atmospheric processes and planet formation

- Observational constraints on chemistry are beginning to be limited by spectroscopic line list data on molecules $\kappa = \sum_i (n_i \times \sigma_i)$
- New advancements in experiments and theoretical calculations are critical to the future of exoplanet characterization with present and upcoming facilities (e.g. HST, JWST, E-ELT).